SOFTWARE PRODUCT HEALTH ASSISTANT

From Complexity to Clarity: Understanding your Software Product’s Health

Software Product
‘ Z Fraunhofer

Health Assistant IEM

A Competitive Advantage Get started now

On the path towards SPHA GitHub Action
resilient Software
Pages 3-5 Pages 6 - 8

SPHA and its use cases Maximal flexibility

the customizable KPI Hierarchy

Pages 9 - 11

Pages 12 - 17
Architecture & Summary
Deployment
Pages 18 - 20

Pages 21 - 22

About SPHA

Unleash your data’s
full potential by

integrating it with SPHA.

About SPHA

Calculate a customizable and transparent health score
based on a hierarchy of KPIs.

SPHA is a tool suite that assesses and communi- -
cates all aspects of software product quality. It does so by combi- :
ning data about your projects from sources like ticketing systems,

and static analysis tools.

A Competitive Advantage:
On the Path Towards Resilient Software

To stay competitive in today’s digital product landscape, it is
essential to build resilient, high-quality software efficiently.
Our goal is to assist product teams in achieving this objective
while also helping stakeholders understand ongoing tasks
and challenges. Achieving this goal is complicated by the in-
creasing complexity of software systems as well as the faster
development and deployment times. To keep up with this
new speed and complexity and still come to realistic conclu-
sions about software products it is necessary to define an au-
tomated and metric based approach.This requires collecting
and evaluating data from various analyses, like linters, static
and dynamic analysis tools, secret scanners, etc. and deriving
an overall management summary. Until now this has been a
complex, cumbersome, and often manual task, typically only
performed late in the product development process as part
of the product release.

Our Software Product Health Assistant (SPHA) allevia-
tes this burden by automating the data-driven assessment
of the software product health. Software product health is
an overarching indicator that summarizes the condition of a
software product based on the aggregation of data artifacts
generated throughout its development process. Depending
on the availability of the data, this software product’s health
assessment can be generated at every stage of the develop-

ment process, providing timely feedback with low effort.

SPHA evaluates the health of software products through a
hierarchy of key performance indicators (KPIs), which are
calculated using a wide range of data sources across the
software development process. These sources include code
platforms like GitHub and GitlLab, static application security
testing (SAST) tools, and project management tools like Jira.
By incorporating data from these and additional sources and
not limiting ourselves to code metrics, SPHA provides a com-

prehensive and thorough assessment of the product’s health.

A Competitive Advantage: On the Path Towards Resilient Software

Scan to go to the
GitHub Repository!

- .- Software Product Health

The health score of a product is
calculated based on a weighted
hierarchy of KPIs. This score can be
customized for each product by
modifying either the hierarchical
structure or the respective weights
assigned to the KPIs.

A Competitive Advantage: On the Path Towards Resilient Software

Within our KPI hierarchy, we differentiate bet-
ween six different aspects that collectively as-
sess the software product health:

1. Security: Security KPIs quantify a product'’s se-
curity risk based on available data, such as those
provided by SAST tools. The risk is assessed by
identifying known vulnerabilities in the product’s
dependencies, analyzing findings of established
code-scanning tools, and information from fur-
ther data sources.

2. Internal Quality: Internal quality KPIs quanti-
fy the quality of a product from an organization’s
internal perspective, that is, from the perspecti-
ve of the product’s developers and maintainers.
These KPIs include and combine quality dimensi-
ons like maintainability, comprehensibility, code
quality, and testability.

3. External Quality: External quality KPIs quan-
tify the externally observable quality of a product
by its users. Note that if your product is a soft-
ware library or framework, the users are also de-
velopers. These KPIs include and combine quality
dimensions like usability, reliability, performance,
and fulfillment of functional requirements.

The six key aspects of Software Product Health

4. Sustainability: Sustainability KPIs quanti-
fy the sustainability of both the product and its
development process. These KPIs primarily fo-
cus on the economic aspects of sustainability,
such as code maintainability and the agility of
the development process. They also incorporate
environmental and social factors, like employee
turnover rates or compliance with green coding
practices.

5. Process Compliance: Process compliance
KPIs quantify compliance with company-specific
development process policies. These policies can
be generally applicable paradigms, like protec-
ting your release branch or organization-specific
policies, whose compliance is monitored using
specific KPIs.

6. Process Traceability: Process traceability KPls
are especially important for external parties in-
terested in understanding how your product is
developed. These KPIs highlight the transparency
of your development process. For example, these
KPIs assess the availability of data needed for de-
tailed analysis of the preceding software product
health aspects or whether the creation and con-
tents of all used artifacts can be tracked.

Get started now:
SPHA GitHub action

Get started now: SPHA GitHub Action

As a straightforward starting point for SPHA, we have crea-
ted a dedicated set of GitHub actions and reusable work-
flows designed to run SPHA in your CI/CD pipeline.

Our reusable workflows are particularly suitable for newer
projects, as they come with two static analysis tools included
by default. These tools are the osv-scanner, which checks a
project’s dependencies for known vulnerabilities, and truff-
lehog, which searches for leaked secrets. Both tools run in
parallel within your CI/CD pipeline. Their results are first
transformed by SPHA's transform action into raw value KPIs,

which SPHA can then process further.

Once both tool executions are completed, SPHA's calculate
step processes the generated raw value KPIs and computes
the overall KPI hierarchy. As a result, our GitHub action up-
loads all tool results along with the KPI result hierarchy to
the CI/CD system. If executed on a pull request, it generates
a comment that textually summarizes SPHA’s results for the
analyzed branch. Moreover, we calculate the impact of the
pull request on the target branch by determining and dis-

Clear target definition
for SPHA

Is there a specific process or product

you want to evaluate?

Why do you want to evaluate it?
sources?

How do you want to utilize SPHA?

Assess which data is

currently available

Which tools do you use within your

software development process?

Are there other possible data

playing the difference in health score before and after the
pull request is merged.

To maximize SPHA's effect on your organization, it is essen-
tial to understand that every organization and product has
unique requirements. Therefore, to provide real benefit to
your organization, it is necessary to utilize SPHA's customiza-
bility and fit it to your needs.

For the definition of KPI hierarchies, we have adapted a pro-
cess including guiding questions based on the “business un-
derstanding” and “data understanding” steps of the well
established cross-industry standard process for data mining
(CRISP-DM)". When defining a customized KPI hierarchy for

your organization, you should follow our process shown in

Figure 1.

Connect available data
with your target

What can you already achieve with

the available data?
How can you utilize the availa-
ble data to assess your product’s

health?

Which data should be made availa-

ble and why?

Figure 1: Process for the definition of a customized KPI hierarchy.

TWirth, R., & Hipp, J. (2000, April). CRISP-DM: Towards a standard process model for data mining. In Proceedings of the 4th international conference on the practical applicati-

ons of knowledge discovery and data mining (Vol. 1, pp. 29-39).

7

@ janniclas commented 2 days ago - edited ~ Member

Bumped SPHA version to 0.1.0. Replaced Kpild enum with string

-0 ﬁ, feat: updated to SPHA version 0.1.0 Verified | X f378b0@3
5 @’ chore: version bumps Verified | X 26ae479

(2 (&, janniclas mentioned this pull request 2 days ago

feat!: kpild type changed from enum to string fraunhofer-iem/spha#49
- €_‘ chore: fixed spha version Verified | +/ 885bf91

@ github-actions ' pot

% Software Product Health Score: 70 [100 (+5)

il Top Level KPI Scores

KPI Score
)3 Process Transparency 50/100

Process Compliance 60/100

3 Security 30/100
Internal Quality 80/100
t# Sustainability 60/100
External Quality 75/100

Figure 2: Automatically generated summary of SPHA’s results as a comment on GitHub.

O To the Github repository
: https:/github.com/fraunhofer-iem/spha

SPHA
and its use cases

SPHA is built on a domain-independent model for KPI-based
process management?, making it applicable to a variety of
software development use cases. Currently, we are focusing
on two main use cases: automated product assessment and

continuous process improvement.

However, one of SPHA's key strengths is its full customiza-
bility, allowing it to reflect your product and organizational
needs. This flexibility extends to various aspects, such as data
sources and the KPI hierarchy, enabling you to tailor SPHA to

fit your specific use case.

3.1. Transparency as a first step toward securing your
Software Supply Chain

The software supply chain includes all the code, tools, and
technology necessary for developing, building, releasing,
and distributing a software product. It is crucial for compa-
nies to secure this supply chain. Third-party dependencies
within your product can be a decisive security factor in the
software supply chain. Therefore, it is imperative to have a
sound understanding of your external dependencies.

When adding a dependency to your product, your team
needs to consider the security and long-term maintenance
of the third-party code being integrated. This means that
your team must either be prepared to fix and maintain the
dependency if its current maintainers abandon it or be rea-
dy to replace it in the future. To avoid these challenges, it
is essential to choose well-maintained dependencies with a
strong track record of addressing vulnerabilities and bugs as
well as a high code quality. This approach contributes to a

more secure software supply chain.

However, evaluating third-party code can be complex and
time-consuming, even for experienced developers. By ana-
lyzing your dependencies, SPHA can assist your developers
in making the right decisions more efficiently. We have a

set of KPIs solely dedicated to third-party dependencies. For

example, we check for known vulnerabilities in the used de-
pendency versions, analyze previously found vulnerabilities
and the time it took to fix them. Furthermore, we estimate
the technical lag of your third-party dependencies, e.g., by
calculating their libyears?, which measure the age of a de-
pendency as the difference between the release date of the

currently used version and the newest version.

3.1.1. Taking it one Step Further: A SPHA-powered
dependency management artifactory

In the previous section, we have described how to analyze
dependencies from the outside by tracking known vulnera-
bilities or calculating technical lag. However, we can take
things one step further by evaluating your product’s third-
party dependencies with SPHA's general-purpose KPI hierar-
chy. The general-purpose hierarchy covers various software
product health aspects and is meant to be used on projects
without further configuration or finetuning to provide a ge-

neral overview of their health.

2\Wohlers, B., Striwer, J., Schreckenberg, F, Barczewicz, F, Dziwok, S. (2022). A
Domain-independent Model for KPI-based Process Management. In: Beata Mrugalska
(eds) Production Management and Process Control. AHFE (2022) International Confe-
rence. AHFE Open Access, vol 36. AHFE International, USA.

3). Cox, E. Bouwers, M. van Eekelen and J. Visser, ,,Measuring Dependency Freshness
in Software Systems,” 2015 IEEE/ACM 37th IEEE International Conference on Soft-
ware. Engineering, Florence, Italy, 2015, pp. 109-118, doi: 10.1109/ICSE.2015.140.

SPHA and its use cases

We developed such a general-purpose KPI hierarchy and implemented it on the Open CoDE platform.

Open CoDE

Open CoDE is a platform that includes a version control system accessible to all developers
working in public administration throughout Germany. Our system utilizes the general-
purpose KPI hierarchy to automatically evaluate projects on the platform in the different
aspects of software product health. This provides developers with decision support and

potential users with clear guidance, thereby building trust and encouraging the reuse of
software components among administration, industry, and society. The same concept can
be applied to a project’s existing dependencies.

The primary benefit of using SPHA with this general-purpo-
se KPI hierarchy to assess third-party dependencies is that
it allows developers to monitor the detailed status of each
dependency in all covered software health aspects consist-
ently. This enables them to determine when maintenance is
required or when it may be time to replace a dependency.

This information can be aggregated and provided to all

teams in a central artifactory.

3.2. Automated assessment through continuous
measurements and transparency

The success of DevOps has shown organizations the value of
having self-sufficient teams that embrace a culture of con-
tinuous learning to create the best products for their custo-
mers. These teams use short feedback loops to gather data,
often during operations or through dedicated experiments,
which helps them identify areas for improvement in their
products. Just as these teams enhance their products based
on customer feedback, we aim to use SPHA to help refine
your development processes and assist them in building se-

cure, high-quality software.

In the following, we will explore how SPHA can help you
measure and enhance the security of your software products.
Assessing software security is often challenging due to the
numerous factors involved. This complexity is evident in the
variety of software security maturity and capability models,
as well as secure software development processes available.

SPHA's flexible KPI hierarchy can be tailored to evaluate a

product’s compliance with an existing security process or as-
sist in establishing one. Your teams can collaboratively com-
mit security activities and objectives, using SPHA to automa-
tically verify adherence to these goals. This is a bottom-up
approach in which SPHA supports teams in tracking their
self-defined security best practices.

Additionally, SPHA can facilitate and guide both internal and
external review processes, especially those related to soft-
ware releases. This is a top-down approach, which can be
beneficial for companies developing software for critical
infrastructures, which have stringent security requirements

defined by external entities.

However, with the introduction of new legislation, such as
the EU Cyber Resilience Act* and the Securing Open Source
Software Act of 2022°, all software development companies
are now facing increased scrutiny regarding software securi-
ty. This makes SPHA a perfect fit for your teams and auditors
to monitor your product’s status in relation to the evolving

security requirements.

As a central collection and processing point for all relevant
information regarding the development process, including
test and tool results, SPHA can also be utilized to prepare
audits. This allows both legal compliance checks and specific
certifications to be simplified by providing all relevant infor-
mation in a transparent, easy-to-understand report, genera-
ted by SPHA.

“https:/digital-strategy.ec.europa.eu/en/policies/cyber-resilience-act
*https://www.congress.gov/bill/117th-congress/senate-bill/4913

Maximal flexibility:
the customizable KPI hierarchy

SPHA's core library automates the calculation of the project’s
health score based on a given KPI hierarchy and project-spe-
cific raw values from various data sources. Figure 1 shows
a simplified example of a KPI hierarchy. Each node in the
hierarchy has a KPI calculation strategy that defines how to
compute its score on a scale from 0 (worst) to 100 (best),
factoring in values from its child nodes. The edges connec-
ting the nodes have weights that modify the influence of the
connected node in the calculation. The values of the leaf no-

des are derived from so-called raw values, which come from

tool results or other automatically processable data sources.
SPHA has a set of predefined tool adapters that transform gi-
ven tool results into raw values, which SPHA's core can then
process. Additionally, SPHA implements a plugin system to

enable easily adding new tool adapters.

4.1. KPI Calculation Strategies
The following provides an overview of SPHA's KPI calculation
strategies and their application using the exemplary KPI

hierarchy shown in Figure 3.

Software Health Score

21

Maximum
Strategy

Security Score

0.4 0.5

Code
Secrets Score

0

28 16

15t Vulnerability Value 2" Vulnerability Value

32

43

Internal Quality
Score

Branch
Protection
Score
Signed
Commits
Score

100 43

true 15 35

Branch protected? #Signed Commits #Unsigned Commits

_Binary
I/O Strategy

Tool Adapters

Open Source
Vulnerabilities

OSV

E
(] El}.

0O Y

Figure 3: Example KPI hierarchy including raw values, highlighting different calculation strategies.

Maximal flexibility: the customizable KPI Hierarchy

Strategy Description

® © 06 6 0 0 06 0 0 0 0 06 0 0 0 0 0 O 0 0 O O O O O 0 O O O O O 0 O O 06 O O 0 0 0 0 0

Determines the KPI value as the arithmetic mean of all inputs.

Formula:
n
B 1
fU _ — xz
n “
1=1
Example(s):
Calculation of the Software Health Score
21443

® © 06 06 0 0 0 0 0 6 0 0 06 0 0 0 0 0 O 0 0 0O 0 0 O O O 0O 0 O 0 0 O O O O 0 0 0 0 0 0
® © &6 06 0 06 0 0 0 0 0 6 0 0 06 0 0 0 0 0 0O 0 06 O 0 O O 0 O 0O 0 O O O O O O 0 0 0 0 0 o0

Determines the KPI value as the weighted sum of all inputs.

Note that the sum of weights should always be 1.

Formula:

Score = E value; x weight,
Vi€input

Example(s):

Calculation of the Security Score as

0.4x28+05x0+0.1x100=21.2~21

® © 06 06 0 0 & 0 0 6 0 0 06 0 0 0 O 0 O 0 0 O 0 0 O O O 0O 0 0O 0 0 O O O 0 0 0 0 0 0 0
® © 06 06 0 0 06 0 0 0 0 06 0 0 06 O 0 O 0 O O 0 O O O O 0 O O O O O O O O O O O 0 O 0 0

Determines the KPI value as the highest/lowest value of all chosen weighted inputs and pro-
pagates the non-weighted input.

Note that the weights must be defined beforehand and that their sum should always be 1.
Formular:

Score = max(V € input*weight)

Score = min(V € input*weight)

Example(s):

max([(28,0.4), (16, 0.6)]) = max(28*0.4 = 11.2,16*0.6 = 9.6) =

Weighted Maximum/Minimum

11.2 propagate 28 as KPI score

® © 06 06 0 0 06 0 0 06 0 0 06 0 0 0 0 O 0 0 0 O 0 0 O O 0O 0O 0 O 0 0 O O O O 0 0 0 0 0 0
® © & 0 © 0 & 6 0 0 06 0 0 06 0 0 O 0 0 O O O O O O O O O O 0 O O O O O 0O O O O O 0 0 ¢

Determines the KPI value as the highest/lowest value of all inputs.
Formular:

Score = max(V € input)

Score = min(V € input)

Example(s):

Calculation of the Vulnerability Score as

max([28,16]) = 28
min([28,16]) = 16

Maximum/Minimum

14

Maximal flexibility: the customizable KPI Hierarchy

Strategy Description

Determines the KPI value as the weighted sum of all inputs.

Note that the input is assumed to be binary — that is, with only two values (true or false resp. 100 or 0).

Formular:

true = 100
Score =

false =0
Example:

Calculation of the Security Score as

true = 100

® © 06 06 06 0 0 06 0 0 0 0 0 0 06 0 O O 0 0 0 O O 0 0 O 0 O O 0 0 O O O 0 O 0 0 0O 0 0 0 0

Determines the KPI value based on the logic operator AND for multiple binary inputs. If all inputs show
the value “true” or 100, “true” or 100 is passed on to the higher-level node.
Note that the input is asNote that each input is assumed to be binary — that is, with only two values

(true or false resp. 100 or 0).

Formular:

Binary - AND

Score = AV € input

® © 06 06 06 0 0 6 06 0 0 06 0 0 0 0 0 0 0 O 0 0 0 O O O O 0 0 O O O O O 0 06 0O 0 0 0 0 0 0

® © 06 06 06 0 0 0 0 0 6 0 0 06 0 0 O 0 0 0 0 0 0 O 0 O O O 0 O O 0 O O O O 0O 0 0 0 0 0 0

Determines the KPI value based on the logic operator OR for multiple binary inputs. If at least one of
the inputs shows the value “true” or 100, “true” or 100 is passed on to the higher-level node.

Note that each input is assumed to be binary — that is, with only two values (true or false resp. 100 or 0).

Formular:

Binary — OR

Score = AV € input

® © 06 06 06 0 06 06 0 06 0 0 0 06 0 0 0 O 0 0 0O 0 06 O 0 O O O 0 O 0 0 O O O O 0O 0 0 0 0 0 0

Determines the KPI value based on the logic operator XOR for exactly two binary inputs. Forwards “true”
or 100 to the higher-level node if only one of the two inputs has this value.

Note that each input is assumed to be binary — that is, with only two values (true or false resp. 100 or 0).

Formular:

=
®]
X
|
-
©
5
o

Score = (i1 A —ig) V (—ig A ig)

® © 06 06 06 0 0 06 0 0 06 0 0 0 0 0 0 0 0 0 0 O 0 0 0 O 0 O 0 0 0 O O O 0 O 0 O 0 0 0 0 0

15

Maximal flexibility: the customizable KPI Hierarchy

Strategy Description

Determines the KPI value as the weighted sum of all inputs.
Note that the KPI can only be calculated for exactly two inputs and that the denominator must be larger

or equal to the numerator to provide a value in the range {0, ..., 100}

Formular:
numerator g 8
Score — {m X 100, if denominator > 0
0, else
Example:
Calculation of the Signed Commits Score as
15
3 x 100 = 42,9 ~ 43

® © 6 0 0 06 0 0 06 0 0 0 0 0 0 0 O O 0 O O O O O O 0 O O O O O O O O O O O O O O O O 0 0

® © 06 06 06 0 0 6 0 0 06 0 0 0 0 0 0 0 0 0 0 O 0 O O O 0 O O 0 0 O 0 O O 0 0 0O O 0 0 0 0 0

Determines the KPI value as the weighted ratio between numerator and denominator.Note that the input
Note that the KPI can only be calculated for exactly two inputs and that the denominator must be larger

or equal to the numerator to provide a value in the range {0, ..., 100}

o -

I Formular:

I;:B numeratorweight x 100, if denominator >

© Score = denominator*weight)

E 0, else

-% Example:

= Note that the KPI can only be calculated for exactly two inputs and that the denominator must

be larger or equal to the numerator to provide a value in the range {0, ..., 100}

15*0.3
35*0.7

® © 06 06 06 0 0 6 0 0 6 0 0 0 0 O 0 0 0 0 0 O O O O 0 0 O O 0 0 O 0 O O O 0 0O O 0 0 0 0 0

x 100 = 16,9 ~ 17

4.2. KPI Hierarchy Serialization
The KPI hierarchy can be serialized and stored using a publicly available JSON schema. Figure 3 shows an example of a seria-
lized KPI hierarchy. By storing the serialized hierarchy alongside the code in the project’s version control system, we can track

possible changes to our calculations. This can be helpful, e.g., to compare historical data for your project.

rootNode": {
kpild ROOT
kpiStrategyId AGGREGATION_STRATEGY
edges
{
target
kpiId SECURITY
kpiStrategyId AGGREGATION_STRATEGY
edges
}
weight': 0.4

target
kpiId PROCESS_COMPLIANCE

kpiStrategyId AGGREGATION_STRATEGY
edges

It
weight": 0.3

target
kpiId INTERNAL_QUALITY
kpiStrategyId AGGREGATION_STRATEGY
edges

}

weight 0.3

}
schemaVersion ahallslhy T

Figure 4: JSON Schema of a serialized KPI hierarchy.

Architecture
& Deployment

Architecture & Deployment

We currently support two deployment scenarios for SPHA.

The first scenario involves using SPHA as a command-line
tool. This tool can be run manually on your development
machine for quick product checks or integrated into a build

pipeline to run automatically with every pull request.

The second scenario involves deploying SPHA as a service
within your organization’s infrastructure. This setup allows
for advanced use cases, such as trend analysis for each pro-
ject, integration with external data sources like ticketing sys-
tems or network storage, and the use of server-based ana-

lysis tools.

5.1. Command Line Tool

SPHA can run as a standalone command-line tool, locally on
your machine or inside your project’s pipeline, as outlined in
Figure 4. SPHA's command-line tool accepts a KPI hierarchy
and tool results as input. It uses SPHA's core library to trans-
form the given tool results into raw value KPIs and then cal-
culate the project’s health score using the KPI hierarchy and
the raw value KPIs. The command line tool’s output is a JSSON
file containing a serialized KPI hierarchy in which every node

is annotated with its calculated score. We provide a GitHub

action to easily integrate SPHA's command line tool into an

existing build pipeline.

° ORT
[]
S TN—
[]
Commit °
PR / Build °
Event ° Static Analysis Tool

SPHA Pipeline Action °

[]
.
° H ,’
Tool Results KPI Hierarchy Health Score °
o Pipeline
S Action
Command Line Tool R Summary

Figure 5: SPHA command line tool inside a build pipeline.

19

GitHub &aitLab CI/CD

5.2. Service

SPHA can be deployed and run as a standalone service con-
nected to your CI/CD pipeline. This deployment setup is simi-
lar to the one we have successfully used to deploy SPHA on
Open CoDE. As a service, SPHA can utilize information about
the project that is not directly generated or accessible within
the build pipeline. For example, many SAST tools operate
as standalone services rather than being executed directly
in the build pipeline. This limits SPHA's ability to access and
process their results directly during the pipeline execution.
Consequently, to synchronize the calculated KPIs with the
results from external tools, SPHA must also function outside

the build pipeline.

In this configuration, the build pipeline sends a notification

to the SPHA backend. This notification contains information

Tool A
Tool B

Tool Plugins

=]
c
(]
>
LLl
S
S
m

Static Analysis Tool

Tool Results

Command Line Tool

Architecture & Deployment

to identify the project, and any results generated within the
build pipeline. The SPHA backend then checks registered
SAST services to determine if they are analyzing the specified
project and retrieves their results. Similarly, SPHA can query
and utilize results from other external services, such as ticke-

ting systems or network storage.

Based on the collected data, the SPHA backend uses the
same core library to calculate the project’s health score and
stores it in a database. Once the health score is calculated,
SPHA updates the pull request check, if applicable. This set-
up allows us to create the most accurate representation of a
product’s current health, with all relevant information avai-
lable alongside the code. Additionally, we provide dedicated
visualizations for the calculated KPIs, ensuring a clear un-

derstanding of the results for all stakeholders.

SPHA Pipeline Action

List of running
Server tools

KPI Database

SPHA Backend
Collect Data Calculate KPIs

A\ 4

Visualization

Asynchronously

[5 SCORE

x

trigger server-
based tools

Analysis
Event

- v
S (SAST Tool Server / -
s R
teecevsnd (SAST Tool Server :

Tool Results

i)

8

Ticket System

Pipeline Action

B

Summary

C
C

Further Services

Event Data :

Figure 6: SPHA as a service.

Summary

The Software Product Health Assistant (SPHA) simplifies the
assessment of software product health by automating the
collection and evaluation of data from various sources, such
as static analysis tools and project management systems. Its
main strength lies in a customizable hierarchy of key perfor-
mance indicators (KPIs), which allows organizations to tailor
the tool to their specific needs.

SPHA provides a comprehensive view of software health
across multiple dimensions, including security, quality, sus-
tainability, and compliance. This empowers teams to make
informed decisions that enhance their software develop-

Summary

ment processes while aligning with business objectives and
regulatory requirements.

By enabling continuous and automated health assessments
throughout the software lifecycle, SPHA ensures that teams
receive relevant, actionable insights that drive improvements
in software quality. This flexibility helps organizations streng-
then their software supply chain, while addressing both in-
ternal and external quality concerns. In today’s competitive
digital landscape, SPHA's comprehensive approach offers a
significant advantage in maintaining resilient, high-quality
software.

Leverage SPHA's customizability by defining a KPI Hierarchy that aligns

with your specific

Integrating SPHA into existing CI/CD pipelines will maximize its impact.

Implement SPHA as a to
provide ongoing insights into your product’s health. This
will facilitate proactive management of software guality
and security.

Utilize SPHA to ensure compliance with evolving
security standards and laws, such as the
or

Explore SPHA's potential beyond basic software product health

assessment by using it to

and foster a culture of transparency and accountability

within your development teams.

22

Imprint

Fraunhofer Institute for
Mechatronic Systems Design IEM
Zukunftsmeile 1

33102 Paderborn

Jan-Niclas Struwer, Benedict Wohlers,
Hutomo Saleh, Matthias Becker, Eric Bodden

Janine Denise Redecker

www.software-product.health

Cover picture: Adobe Stock / arhendrix
Page 13: GitHub / GitLab / OSV /
TruffleHog / ORT / aqua trivy Logo
Page 19: GitHub / GitLab Logo

Auflage: 200 Stlck

© Fraunhofer IEM,
Paderborn 2024

